Actuarial Discussion Forum - Professional Discussions for Professional Actuaries

Actuarial Jobs from Actuary.com    Submit Your Actuarial Resume Anonymously
Other Insurance Jobs    Other Financial Jobs    Other Health Jobs    Other IT Jobs    Other Jobs, Careers and Employment    Actuarial News
Directory of Actuarial Exam Study Courses - Online    Directory of Actuarial Exam Study Materials    Directory of Actuarial Exam Study Seminars - Live
Directory of Actuarial Recruiters    Directory of Actuarial Schools    Actuarial Grads Network    Actuary.com 



D.W. Simpson & Co, Inc. - Worldwide Actuarial Jobs
Life Jobs 
Health Jobs Pension Jobs Casualty Jobs Salary Apply
Pauline Reimer, ASA, MAAA - Pryor Associates
Nat'l/Int'l Actuarial Openings: Life P&C Health Pensions Finance
ACTEX Publications and MadRiver Books
Serving students worldwide for over 40 years
Advertise Here - Reach Actuarial Professionals
Advertising Information
Actuarial Careers, Inc. - Actuarial Jobs Worldwide
Search positions by geographic region, specialization, or salary
Ezra Penland Actuarial Recruiters - Top Actuarial Jobs
Salary Surveys  Apply Online   Bios   Casualty   Health   Life   Pension

+ Reply to Thread
Results 1 to 2 of 2

Thread: Deriving MGF for exponential

  1. #1
    Actuary.com - Level I Poster
    Join Date
    Nov 2007
    Posts
    20

    Deriving MGF for exponential

    I understand that M(t) = E[e^tX]

    so for example, for exponential with mean 1/c would be

    integral (0, inf) e^tx * ce^-cx dx

    which simplifies to

    c * integral (0, inf) e^x(t-c) dx

    but how do we know whether (t-c) < 0 or not?

    Thanks in advance.

  2. #2
    Actuary.com - Level II Poster lee_onion's Avatar
    Join Date
    Dec 2007
    Posts
    30
    If t >= c, then the integral may be INF, and that means the MGF is not exist.
    And when t < c, the MGF exists and it equal to c/(c-t).

+ Reply to Thread

Thread Information

Users Browsing this Thread

There are currently 1 users browsing this thread. (0 members and 1 guests)

     

Bookmarks - Share

Bookmarks - Share

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts