D.W. Simpson Worldwide Actuarial Recruitment Life Health Pension Casualty US Asia Australia Europe Salary Apply Ezra Penland Actuarial Recruiters Top Actuary Jobs Salary Surveys Apply Bios Casualty Health Life Pension Pauline Reimer, ASA, MAAA Pryor AssociatesActuarial Openings: Life, P&C, Health, Pensions, Finance Advertise Here Contact us at actuary@actuary.com or 770-425-8576Reach top actuarial professionals

1. ## Soa #36

Please break the solution into more steps to help me understand.

A group insurance policy covers the medical claims of the employees of a small
company. The value, V, of the claims made in one year is described by
V = 100,000Y
where Y is a random variable with density function
(1 )4 for 0 1
( )
0 otherwise,
k y y
f y
⎧ − < <
=⎨⎩
where k is a constant.
What is the conditional probability that V exceeds 40,000, given that V exceeds 10,000?
(A) 0.08
(B) 0.13
(C) 0.17
(D) 0.20
(E) 0.51

Solution to be broken down further:

Solution:B
Todeterminek,notethat
1=    
1
4 51
0
0
1 1
5 5
! k  y dy   k  y  k 
k=5
WenextneedtofindP[V>10,000]=P[100,000Y>10,000]=P[Y>0.1]
=    
1
4 51
0.1
0.1
! 5 1 y dy   1 y =(0.9)5=0.59andP[V>40,000]
=P[100,000Y>40,000]=P[Y>0.4]=    
1
4 51
0.4
0.4
! 5 1 y dy   1 y =(0.6)5=0.078.
ItnowfollowsthatP[V>40,000V>10,000]
= [ 40,000 10,000] [ 40,000] 0.078
[ 10,000] [ 10,000] 0.590
P V V P V
P V P V
# # #
 
# #
=0.132.

Here are the urls to the sample questions below:
http://www.soa.org/Files/Edu/edu-exam-p-sample-quest.pdf
http://www.soa.org/Files/Edu/edu-exam-p-sample-sol.pdf

There are currently 1 users browsing this thread. (0 members and 1 guests)

#### Posting Permissions

• You may not post new threads
• You may not post replies
• You may not post attachments
• You may not edit your posts
•